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Abstract
Using the q-version of the Darboux transform we obtain the general solution
of q-difference Riccati equation from a special one by the action of one-
parameter group. This allows us to construct the solutions for the large class of
q-difference Riccati equations as well as q-difference Schrödinger equations,
which are different from those obtained by the standard Darboux transform.

PACS numbers: 02.30.Uu, 02.30.Ik, 02.10.De, 02.30.Gp

Introduction

In this paper we investigate the Darboux-like factorization method for the q-difference version
of Riccati and Schrödinger equations. It appears that this method, which is by all means
effective for differential Riccati and Schrödinger equations [D, C, I-H, L-R, M-S, Mil, N-D],
leads to non-trivial and interesting results in the q-deformed case too. Some of the new
formulae have their undeformed versions. They tend at the limit q → 1 to the limits which
are well known in differential case.

The Darboux factorization

− d2

dx2
+ V (x) =

(
d

dx
+ u(x)

)(
− d

dx
+ u(x)

)
(1)

gives the well-known correspondence between the one-dimensional Schrödinger equation(
− d2

dx2
+ V (x)

)
ψ(x) = 0 (2)

and the Riccati equation

d

dx
u(x) = −u2(x) + V (x) (3)
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where

u(x) = d

dx
lnψ(x). (4)

This correspondence is a starting point for a search of exact solutions of both the equations
above [M-S].

We will investigate, in this paper, an analogue of the Darboux method for the pair of
q-difference equations

∂q

(
ψ(x)

ϕ(x)

)
=

(
R(x) S(x)

V (x) T (x)

) (
ψ(x)

ϕ(x)

)
(5)

and

V (x) = ∂qu(x)− T (x)u(x) + R(x)u(qx) + S(x)u(x)u(qx) (6)

whose solutions are related by

u(x) = ϕ(x)

ψ(x)
. (7)

It is clear that (5) and (6) generalize (2) and (3) respectively. The Schrödinger and Riccati
equations are obtained in the limit q → 1 under the additional assumption that R(x) = 0 =
T (x).

Let us recall here that the q-derivative and q-integral are defined by

∂qψ(x) = ψ(x)− ψ(qx)
(1 − q)x (8)

∫ x

0
ψ(t) dq t =

∞∑
n=0

(1 − q)qnxψ(qnx) (9)

respectively, where 0 � q � 1. The standard derivative and integral are obtained for q = 1.
However, the reason for the investigation of the q-difference equations (5) and (6) is not only
that they generalize in a natural way the Schrödinger and Riccati equations.

If one additionally assumes 1 − (1 − q) xT (x) = 0 in the real case and one takes qn instead
of the real argument x, equation (5) appears to reduce to the three-term recurrence equation

ψn+2 = [1 − (1 − q)qn+1R(qn+1)]ψn+1 + (1 − q)2q2n+1S(qn+1)V (qn)ψn (10)

for the function ψn := ψ(qn) of the natural argument n ∈ N ∪ {0}. Hence, the q-difference
equation (5) can be applied to those physical problems which are related to the theory of
orthogonal polynomials [Su].

The paper is organized in the following way. In section 1 we introduce the q-difference
Darboux transform and integrate equation (5) for the case in which V (x) = 0. The action of
the q-difference Darboux transform is presented in section 2. There we find a one-parameter
auto-Bäcklund transform for the q-difference Riccati equation and show that it generates the
general solution of (6) from a special one. Section 3 is devoted to the presentation of some
extended classes of solutions of the q-difference Schrödinger and Riccati equation. All results
presented in sections 1 and 2 have well-known differential counterparts and this aspect is
also exhibited in the paper. Finally, we present solutions for the families of Riccati equations
which are different from those obtained by the Darboux transform. It shows that the method
proposed in the paper is similar but not the same as the Darboux factorization method.



Darboux-like transform and integrable cases of the q-Riccati equation 749

1. The q-difference Darboux-like transform

In order to solve the q-difference equation (5) by the iterative method we will rewrite it in the
following form:(

ψ(qx)

ϕ(qx)

)
= �(x)

(
ψ(x)

ϕ(x)

)
(11)

where

�(x) = I − (1 − q)x
(
R(x) S(x)

V (x) T (x)

)
. (12)

Let us assume here thatR(x), S(x), V (x) and T (x) are continuous functions of a real argument.
Hence, the matrix sequence

�(qn−1x) · · ·�(qx)�(x) =: �(x; q)n (13)

is pointwise convergent,

�(x; q)n →n→∞ �(x; q)∞ (14)

to a matrix function�(x; q)∞. The inverse matrix function�(x; q)−1
∞ is exactly the resolvent

of equation (5), i.e.(
ψ(x)

ϕ(x)

)
= �(x; q)−1

∞

(
ψ(0)
ϕ(0)

)
. (15)

So the problem of solving (5) is equivalent to the calculation of the infinite matrix product

�(x; q)∞ :=
∞∏
n=0

�(qnx). (16)

The above suggests the following transform:

�(x)→ D(qx)−1�(x)D(x) = �′(x) (17)(
ψ(x)

ϕ(x)

)
→ D(x)−1

(
ψ(x)

ϕ(x)

)
=

(
ψ ′(x)
ϕ′(x)

)
(18)

where D (x) is aGL(2,R)-valued function of the real argument. It is obvious that the transform
(17), (18) preserves the form of equation (11) and the transformed resolvent �′(x; q)−1

∞ is
related to the initial one by

�′(x; q)−1
∞ = D(x)−1�(x; q)−1

∞D(0). (19)

Thus the virtue of the above transform is to find such a matrix-valued function D (x) for
equation (5), which reduces the unknown resolvent�(x; q)−1

∞ to some known one�′(x; q)−1
∞ .

We will find later the explicit form of the resolvent�′(x; q)∞ in the case when V ′(x) = 0.
So, in order to integrate (5) it is enough to transform (16) to the upper triangular matrix function
�′(x) by the use of (17), (18). Any matrix can be decomposed generically into the product
of upper triangular and lower triangular matrices. Thus, without loss of generality, we can
assume that

D(x) =
(

1 0
c(x) 1

)
. (20)

After substituting (20) into (17) we find that �′(x) will be an upper triangular matrix if and
only if the function c(x) satisfies the q-difference Riccati equation (6).

The q-difference Schrödinger operator factorizes into the form

−∂2
q + V (x) = (∂q + u(qx))(−∂q + u(x)) (21)
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iff the function u(x) satisfies equation (6) with R(x) = T (x) = 0 and S(x) = 1. Hence, it is
natural to call the matrix transform (17), (18) the q-difference Darboux transform.

We will use the identity
∞∏
n=0

(1 − (1 − q)qnxf (qnx)) = exp

(
1

1 − q
∫ x

0

ln(1 − (1 − q)tf (t))
t

dqt

)
(22)

which is an easy consequence of the definition of the q-integral.

Proposition 1. If R′(x), S′(x) and T ′(x) are continuous functions and V ′(x) = 0, then

�′(x; q)∞ =
[

exp 1
1 − q

∫ x
0

ln(1 − (1 − q)tR′(t))
t

dq t B(x)

0 exp 1
1 − q

∫ x
0

ln(1 − (1 − q)tT ′(t))
t

dqt

]
(23)

where

B(x) =
[
−exp

(
1

1 − q
∫ x

0

ln(1 − (1 − q)tT ′(t))
t

dq t

)][∫ x

0

S′(t)
1 − (1 − q)tR′(t)

× exp

(
1

1 − q
∫ t

0

1

s
ln

1 − (1 − q)sR′(s)
1 − (1 − q)sT ′(s)

dqs

)
dqt

]
. (24)

Proof. Since V ′(x) = 0 we can assume that �′(x; q)∞ is the upper triangular matrix of the
form

�′(x; q)∞ =




∞∏
n=0
(1 − (1 − q)qnxR′(qnx)) B(x)

0
∞∏
n=0
(1 − (1 − q)qnxT ′(qnx))


 . (25)

Then from the equation

�′(x; q)∞ = �′(qx; q)∞�′(x) (26)

we find that the function B(x) does satisfy

B(x) = [1 − (1 − q)xT ′(x)]B(qx)−
∞∏
n=0

(1 − (1 − q)qn+1xR′(qn+1x))(1 − q)xS′(x). (27)

Equation (27) is solved by the iterative method. One finally gets

B(x) = −
∞∏
n=0

(1 − (1 − q)qnxT ′(qnx))
∞∑
n=0

(1 − q)qnxS′(qnx)
1 − (1 − q)qnxR′(qnx)

×
∞∏
k=n

(1 − (1 − q)qkxR′(qkx))
(1 − (1 − q)qkxT ′(qkx))

. (28)

Substituting (28) into (25) and using identity (22), we obtain the formulae (23) and (24). �

2. The solution of the q-difference Schrödinger equation and auto-Bäcklund transform
for the q-difference Riccati equation

We have obtained in section 1 the resolvent function �′(x; q)−1
∞ for the case of V ′(x) = 0

(proposition 1). Let us stick to this case and let �′(x) of (17) remain the upper triangular
matrix function. Applying the q-difference Darboux-like transform to �(x), with D (x) given
by (20), we find the general solution of the q-differential equation (5).
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Proposition 2. Let us assume that functions R(x), S(x), T(x) and V (x) from equations (5) are
continuous. Let (ψ0(x) ϕ0(x))

 be a particular solution of (5) and

u0(x) = ϕ0(x)

ψ0(x)
. (29)

Then the potential V (x) is given by

V (x) = ∂qu0(x)− T (x)u0(x) + R(x)u0(qx) + S(x)u0(x)u0(qx) (30)

and the general solutions of (5) are given by

ψ(x) = exp

(
− 1

1 − q
∫ x

0

ln{1 − (1 − q)t[R(t) + u0(t)S(t)]}
t

dq t

)

×
[
D + F

∫ x

0

S(t)

1 − (1 − q)t[R(t) + u0(t)S(t)]

× exp

(
1

1 − q
∫ t

0

1

s
ln

1 − (1 − q)s[R(s) + u0(s)S(s)]

1 − (1 − q)s[T (s)− u0(qs)S(s)]
dqs

)
dq t

]
(31)

ϕ(x) = F exp

(
− 1

1 − q
∫ x

0

ln{1 − (1 − q)t[T (t)− u0(qt)S(t)]}
t

dqt

)

+ u0(x) exp

(
− 1

1 − q
∫ x

0

ln{1 − (1 − q)t[R(t) + u0(t)S(t)]}
t

dq t

)

×
[
D + F

∫ x

0

S(t)

1 − (1 − q)t[R(t) + u0(t)S(t)]

× exp

(
1

1 − q
∫ t

0

1

s
ln

1 − (1 − q)s[R(s) + u0(s)S(s)]

1 − (1 − q)s[T (s)− u0(qs)S(s)]
dqs

)
dq t

]
(32)

The constants D and F are related to the initial conditions by:
D = ψ(0)

(33)
F = −ψ(0) ϕ0(0)

ψ0(0)
+ ϕ(0).

Proof. In order to prove the formulae (31), (32) and (33) we assume in (12) that �′(x) is
upper triangular and apply the q-difference Darboux-like transform (17) with

D(x) =
(

1 0
u0(x) 1

)
. (34)

Formula (30) follows now from (17) and from the property of�′(x) of being upper triangular.
Formulae (31) and (32) are obtained from proposition 1 and (33). �

As a corollary of proposition 2 we obtain the auto-Bäcklund transform for the q-difference
Riccati equation.

Proposition 3. Let u0(x) be some special solution of equation (6). Then the general solution
of (6) is given by

ut(x) = (B+
t u0

)
(x) = u0(x)

+
t exp

(
1

1 − q
∫ x

0
1
y

ln 1 − (1 − q)y[R(y) +u0(y)S(y)]
1 − (1 − q)y[T (y)− u0(qy)S(y)]

dqy
)

1 + t
∫ x

0
S(y)

1 − (1 − q)y[R(y) +u0(y)S(y)]
exp

(
1

1 − q
∫ y

0
1
s

ln 1 − (1 − q)s[R(s)+ u0(s)S(s)]
1 − (1 − q)s[T (s)− u0(qs)S(s)]

dqs
)

dqy
(35)

where t ∈ R.



752 A Odzijewicz and A Ryżko

Proof. Formula (35) is obtained by substituting (31) and (32) into (7) and putting t = F
D

.
�

The q-difference Schrödinger equation(−∂2
q + V (x)

)
ψ(x) = 0 (36)

is a special case of (5) and is obtained by putting R(x) = T (x) = 0 and S(x) = 1. From
proposition 2 we may draw the following:

Corollary 1. The solution of the q-difference Schrödinger equation with the potential

V (x) = ∂qu0(x) + u0(x)u0(qx) (37)

is given by

ψ(x) = exp

(
− 1

1 − q
∫ x

0

ln(1 − (1 − q)tu0(t))

t
dq t

) [
D + F

∫ x

0

1

1 − (1 − q)tu0(t)

× exp

(
1

1 − q
∫ t

0

1

s
ln

1 − (1 − q)su0(s)

1 + (1 − q)su0(qs)
dqs

)
dqt

]
. (38)

In the limit of q → 1 the q-difference equations (5) and (6) tend to their differential
counterparts

d

dx

(
ψ(x)

ϕ(x)

)
=

(
R(x) S(x)

V (x) T (x)

) (
ψ(x)

ϕ(x)

)
(39)

and

V (x) = d

dx
u(x) + (R(x)− T (x))u(x) + S(x)u2(x) (40)

where u(x) is given by (7). Propositions 2 and 3 are valid in the limit q → 1 too. Therefore,
we can apply them to the differential case and reproduce, in such a way, the formulae for
general solutions of (39) and (40). They are given by

ψ(x) = exp

(∫ x

0
(R(t) + u0(t)S(t)) dt

)

×
[
D + F

∫ x

0
S(t) exp

(∫ t

0
[T (s)− R(s)− 2u0(s)S(s)] ds

)
dt

]
(41)

ϕ(x) = F exp

(∫ x

0
(T (t)− u0(t)S(t)) dt

)
+ u0(x) exp

(∫ x

0
(R(t) + u0(t)S(t)) dt

)

×
[
D + F

∫ x

0
S(t) exp

(∫ t

0
[T (s)− R(s)− 2u0(s)S(s)] ds

)
dt

]
(42)

and

ut(x) = u0(x) +
t exp

(∫ x
0 [T (y)− R(y)− 2u0(y)S(y)] dy

)
1 + t

∫ x
0 S(y) exp

(∫ y
0 [T (s)− R(s)− 2u0(s)S(s)] ds

)
dy
. (43)

Here (ψ0(x)ϕ0(x))
 and u0(x) are some special solutions of (39) and (40).

In order to describe the properties of the family of solutions ut(x) = (B+
t u0

)
(x), t ∈ R,

given by (35) let us state the following:
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Proposition 4.

• Transforms (35) form a one-parameter group

B+
t1

◦ B+
t2

= B+
t1+t2 (44)

which acts transitively on the space of all solutions of the q-difference Riccati
equations (6).

• The solutions ut1(x), ut2(x), ut3(x), ut4(x) satisfy the unharmonical superposition
principle

(ut4(x)− ut3(x))(ut1(x)− ut2(x))
(ut3(x)− ut1(x))(ut2(x)− ut4(x)) = (t4 − t3)(t1 − t2)

(t3 − t1)(t2 − t4) (45)

for t1, t2, t3, t4 ∈ R.

Proof.

• According to proposition 3 any solution of (6) is given by Bsu0 for some s ∈ R. Since
Bt1(Btu0) is a solution of (6), we have

B+
t1

◦ B+
t2
u0 = B+

s u0. (46)

One can find s ∈ R by evaluation of both sides of (46) at x = 0. Thus, using (33) we
obtain

t1 + (t2 + u0(0)) = s + u0(0). (47)

• The equality is obtained from (35) by direct calculation. �
The right-hand side of (45) is invariant with respect to the real fractional transformation

t ′i = ati + b

cti + d

(
a b

c d

)
∈ SL(2,R) (48)

of the parameters t1, t2, t3 and t4. Hence, the left-hand side of (45) is SL(2,R)-invariant too.

3. Some integrable cases

In proposition 3 we have constructed the transform which generates the general solution of the
q-Riccati equation (6) from a given special one. It was done by the action of a one-parameter
group of transformations

{B+
t

}
, t ∈ R. Formula (35) which defines the group

{B+
t

}
t∈R

action
does depend on the potentials R(x), S(x) and T(x). It does not contain the potential V (x). This
allows us to define some method of creation of new integrable systems from a system which
one knows how to integrate. In order to do this let us introduce some notation.

By I we will denote the map

Iu(x) := −u(x). (49)

The operator which acts on the function u(x) on the right-hand side of the q-Riccati equation (6)
will be denoted by R+, i.e.

R+u(x) := ∂qu(x)− T (x)u(x) + R(x)u(qx) + S(x)u(x)u(qx). (50)

By R− we will denote the operator

R−u(x) := −∂qu(x) + T (x)u(x)− R(x)u(qx) + S(x)u(x)u(qx). (51)

It is clear that

R+ ◦ I = R− and R− ◦ I = R+. (52)
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Hence, if u(x) is the solution of the equation

R+u(x) = V (x) (53)

then Iu(x) does satisfy

R− ◦ Iu(x) = V (x) (54)

and vice versa. The one-parameter groups (35) for equations (53) and (54) will be denoted by{B+
t

}
t∈R

and
{B−

t

}
t∈R

respectively. They are related by

B−
t = I ◦ B+

t ◦ I. (55)

After application of the transform

B−
t1···tn := I ◦ B+

t1
◦ I ◦ B+

t2
◦ · · · ◦ I ◦ B+

tn
◦ I (56)

to u0(x) which one assumes to be the solution of (6) with the potential V0(x), we obtain the
solution

u(t1, . . . , tn, x) := B−
t1 ···tnu0(x) (57)

of (53) with some new potential

R+u(t1, . . . , tn, x) = V (t1, . . . , tn, x) (58)

which is an n-parameter deformation of the initial one. The same function also satisfies

R−u(t1, . . . , tn, x) = V (t2, . . . , tn, x). (59)

In such a way we obtain the family of q-difference Riccati equations (58) and (59) generated
by u0(x) and the transform (56).

It is worth mentioning here the group-like property of B−
t1···tn :

B−
0...0 = id(B−
t1 ···tn

)−1 = B−
−tn ···−t1 (60)

B−
t1···tn ◦ B−

s1···sm = B−
t1···tn−1 tn+s1s2···sm .

In the particular case n = 1, applying
{B−

t

}
t∈R

to

V0(x) = −∂qu0(x) + u0(x)u0(qx) (61)

we obtain

R+u(t, x) = V (t, x) (62)

R−u(t, x) = R−u0(x) (63)

where u(t, x) = B−
t u0(x). Simple calculation gives a solution

u(t, x) = u0(x)−
t exp

(
1

1 − q
∫ x

0
1
y

ln 1 + (1 − q)yu0(y)

1 − (1 − q)yu0(qy)
dqy

)
1 + t

∫ x
0

1
1 + (1 − q)yu0(y)

exp
(

1
1 − q

∫ y
0

1
s

ln 1 + (1 − q)su0(s)

1 − (1 − q)su0(qs)
dqs

)
dqy

(64)

for the potential

V (t, x) = V0(x) + 2∂qu0(x)

− 2∂q
t exp

(
1

1 − q
∫ x

0
1
y

ln 1 + (1 − q)yu0(y)

1 − (1 − q)yu0(qy)
dqy

)
1 + t

∫ x
0

1
1 + (1 − q)yu0(y)

exp
(

1
1 − q

∫ y
0

1
s

ln 1 + (1 − q)su0(s)

1 − (1 − q)su0(qs)
dqs

)
dqy

. (65)
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In the limit of q → 1 equations (62) and (63) correspond to the proper differential equations

and (64) tends to the already known [Mi] form of the solution

u(t, x) = u0(x)− ∂

∂x
ln

(
1 + t

∫ x

0
exp

(
2

∫ y

0
u0(z) dz

)
dy

)
(66)

of (3) with potential given by

V (t, x) = V0(x) + 2
∂

∂x
u0(x)− 2

∂2

∂x2
ln

(
1 + t

∫ x

0
exp

(
2

∫ y

0
u0(z) dz

)
dy

)
. (67)

Combining (62) and (63) we find the formula

u(t, x) = 1
2

{
(1 − q)x 1

2 (V (t, x)− R−u0(x))

±
√[
(1 − q)x 1

2 (V (t, x)− R−u0(x))
]2

+ 2(V (t, x) + R−u0(x))

}
(68)

which expresses the solution u(t, x) by the t-deformed potential V (t, x) and the initial solution
u0(x).

As an example we shall apply our method in the case when the initial potential and
corresponding solution for the chain of q-Riccati equation (58) are given by

V0(x) = −a 1 − qα
1 − q x

α−1 + a2qαx2α (69)

and

u0(x) = axα (70)

respectively. Using formulae (65) and (64) we find that

V (t, x) = a
1 − qα
1 − q x

α−1 + a2qαx2α

− 2t

expR(aq
α+1xα+1)

expR(−aqαxα+1)(
1 + t

∫ x
0

expR(aqα+1yα+1)

expR(−aqαyα+1)
dqy

) (
1 + qt

∫ x
0

expR(aq2(α+1)yα+1)

expR(−aq2α+1yα+1)
dqy

)
×

{
(1 + qα)aqα+1xα

(
1 + t

∫ x

0

expR(aq
α+1yα+1)

expR(−aqαyα+1)
dqy

)
− t expR(aq

α+1xα+1)

expR(−aq2α+1xα+1)

}
(71)

and

u(t, x) = axα −
t

expR(ax
α+1)

expR(−aqαxα+1)

1 + t
∫ x

0
expR(aqα+1yα+1)

expR(−aqαyα+1)
dqy

(72)

where

expR(x) =
∞∑
n=0

1

R(q) · · ·R(qn)x
n (73)

is the generalized exponential function in the sense of [O] with

R(x) = 1 − xα+1

(1 − q)xα+1
. (74)

One may of course continue applying the procedure step by step. We will not pursue this way
here since the expressions for successive potentials and solutions are very complicated and
not illuminating.
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In the limit q → 1, formulae (72) and (71) tend to the form

u(t, x) = axα − t exp
(

2a
α + 1x

α + 1
)

1 + t (α + 1)
(− α+1

2a

) α
2(α+1) A(x)

(75)

V (t, x) = aαxα−1 + a2x2α − 4t
axα exp

(
2a
α + 1x

α+1
)

1 + t (α + 1)
(− α+1

2a

) 1
α+1 A(x)

+ 2t2
exp2

(
2a
α + 1x

α+1
)

(
1 + t (α + 1)

(− α + 1
2a

) 1
α+1 A(x)

)2 (76)

where the function A(x) is given by

A(x) = #
(

1

α + 1

)
−

(
−α + 1

2a

) α
2(α+1)

x− α
2 exp

( α

α + 1
xα+1

)

× W− α
2(α+1) ,

1
2 − α

2(α+1)

(
− 2a

α + 1
xα+1

)
. (77)

Here #(x) is the gamma function and W(x) is the Whittaker function [Ry-G].
Let us consider the subcase of α = 0, corresponding to the constant potential

V0(x) = a2. (78)

One-parameter deformation (71) of the above (78) is given in this case by the family of
potentials

V (t, x) = a2
(
1 − t

2a

)2
exp(−2ax)− 3at

(
1 − t

2a

)
+ t2

4 exp(2ax)((
1 − t

2a

)
exp(−ax) + t

2a exp(ax)
)2 (79)

and solution (72) of the differential Riccati equation with this potential reads

u(t, x) = a − t(
1 − t

2a

)
exp(−2ax) + t

2a

. (80)

In the special case t = a, the potential (79) reduces to the Rosen–Morse potential

V (a, x) = a2 − 2a2

cosh2 ax
. (81)

Conversely, transforming the variable by translation x → x − 1
2a ln

(
2a
t

− 1
)

from (81), one
obtains (79). The two-parameter deformation B−

t1t
of (78) generates the potential

V (t1, t, x) = a2 +
4at

(
1 − t

2a

)
((

1 − t
2a

)
exp(−ax) + t

2a exp(ax)
)2

− 2
exp(−2ax)

[
−2at1

(
1 − t

2a

)2 (
1 + t1

2a − t1t

2a2

) − 2 t
2
1 t

a

(
1 − t

2a

)3
]

(
1 + t1

2a − t1t

2a2 − t1
2a

(
1 − t

2a

)2
exp(−2ax) + t1t

a

(
1 − t

2a

)
x + t1t

2

8a3 exp(2ax)
)2

+

[
t21 t

2

a2

(
1 − t

2a

)2
]

+ exp(2ax)
[
t1t

2

2a

(
1 + t1

2a − t1t

2a2

) − t21 t
3

2a3

(
1 − t

2a

)]
(

1 + t1
2a − t1t

2a2 − t1
2a

(
1 − t

2a

)2
exp(−2ax) + t1t

a

(
1 − t

2a

)
x + t1t

2

8a3 exp(2ax)
)2

+
x exp(−2ax)

[−2t1t
(
1 − t

2a

)]
+ x exp(2ax)

[
t21 t

3

2a2

(
1 − t

2a

)]
(

1 + t1
2a − t1t

2a2 − t1
2a

(
1 − t

2a

)2
exp(−2ax) + t1t

a

(
1 − t

2a

)
x + t1t

2

8a3 exp(2ax)
)2 (82)
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and the solution of the difference Riccati equation (3) for this potential is

u(t1, t, x) = −a +
t(

1 − t
2a

)
exp(−2ax) + t

2a

− t1
(
1 − t

2a

)2
exp(−2ax) + t1t

a

(
1 − t

2a

)
+ t1t

2

4a2 exp(2ax)

1 + t1
2a − t1t

2a2 − t1
2a

(
1 − t

2a

)2
exp(−2ax) + t1t

a

(
1 − t

2a

)
x + t1t

2

8a3 exp(2ax)
. (83)

The potentials (79), (81) and (82) are known and were obtained by different methods, for
example in [I-H, Mi, M-S, L-R, St, Sta, M, Ma].
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[Ry-G] Ryżyk I M and Gradsztejn I C 1951 The Tables of Integrals, Sums, Series and Products (Moscow: GITTL)

(in Russian)
[St] Stahlhofen A A 1992 Positons of the modified Korteweg de Vries equation Ann. Phys. 1 554

[Sta] Stahlhofen A A 1995 Completely transparent potentials for the Schrödinger equation Phys. Rev. A 51 934
[Su] Sujetin I K 1979 Classical Orthogonal Polynomials (Moscow: Nauka) (in Russian)


